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ABSTRACT  

Spatial data are data observed from different neighboring but non-overlapping areal units. In 

Nigeria, measles continues to be a leading cause of morbidity and mortality in children. Numerous 

factors, including spatial (S.P.) and temporal trends impacting the disease's intensity and 

dissemination, affect the transmission dynamics of measles. Although numerous methods exist for 

spatially time-to-event data, most S.P. models exclude the interaction effect and spatial 

autocorrelation. Therefore, this study offers the most effective model for overcoming these 

constraints and allows researchers to flexibly represent spatial clustering in their disease data. 

However, this research aims to use a–temporal mode to capture the autocorrelation and interaction 

effects in measles data. To provide an appropriate model for capturing the autocorrelation and 

interaction effect in the data across the areal units and time and to determine whether the model 

investigated above is consistent with capturing the measles data, This work uses simulations and 

poison distribution to identify the substantial spatiotemporal model and interaction/ autocorrelation 

influence on area unit data. The findings show that the interaction between the small area unit and 

period decreases as time increases, while the autocorrelation increases for the five area units. The 

spatial-temporal model is better fitted to 5 areal units when the period is 50 (5x50); however, in 10 

and 15 area units, the interaction between the areal unit and period decreases as time increases, and 

the autocorrelation also decreases. The spatio-temporal model was better fitted to 10 areal units 

when the period was 20 (10 × 20) and 15 areal units when the period was 100 (15 × 10). 
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1. INTRODUCTION 

Measles is a severe threat in many countries, including Nigeria. Numerous factors, including 

regional and temporal trends, impact the disease's intensity and dissemination. A comprehensive 

understanding of the spatiotemporal dynamics of measles is lacking, which hinders the development 

of effective control and prevention strategies. Measles is a severe public health threat in many 

countries, including Nigeria. This is because there isn't a robust modeling framework that can 

faithfully represent the temporal and spatial dynamics of the disease. 

Meanwhile, current measles research frequently concentrates on discrete elements like 

disease burden or vaccine coverage but does not include these elements in a cohesive spatiotemporal 

model. This information gap hinders our ability to identify high-risk areas, understand transmission 

patterns, and develop targeted interventions to stop the spread of measles effectively. There are 
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additional obstacles in adequately estimating the spatial-temporal trends of measles due to a 

location's geographic characteristics, such as its diversified population distribution, varying 

accessibility to healthcare, and traditional cultural customs. These variables could be involved in 

localized epidemics and irregular disease transmission patterns in various places and areas. 

Scan statistics, using spatio-temporal analyses, have been widely applied to explore disease 

patterns and detect high-risk disease clusters, particularly for diseases with limited resources for 

prevention (Kulldorff et al. 2015). Some studies have explored irregularly shaped disease clusters, 

which might more realistically reflect actual, albeit complicated, disease patterns (Costa and 

Kulldorff, 2014). Moreover, most studies have utilized relative risk (R.R.) derived from scan 

statistics to identify high-risk regions (Carrel et al. 2009, Jones et al. 2012, Ling et al.2014 and 

Sindato et al. 2014). Rare studies have measured the population-attributable risk percentage to 

evaluate the regional disease burden (Zhu et al., 2013). Moreover, there is a lack of studies on the 

spatio-temporal patterns of measles, mainly in Guangxi, a region with large-scale measles 

outbreaks. 

Lawson (2018), Rushworth et al. (2014), Napier et al. (2018) and Beraha et al. (2021) in 

their study, examined the issue of spatially dependent areal data and suggested using a finite mixture 

of Gaussian distributions to characterize the data gathered for every areal unit. A joint distribution 

for a set of vectors on the simplex, a logistic transformation of the Gaussian multivariate CAR 

models, is used to introduce spatial dependency.  

A Bayesian model for spatiotemporal data based on a generalized linear mixed-effects 

model was suggested by Nicoletta et al. (2022) to quantify the percentage of isolation among 

various clusters in a given geographic area (Lee et al. 2018, 2021 and 2022) but did not consider 

interaction and autocorrelation effect. 

A few of the many reasons to model these include determining the degree of segregation 

between two or more different groups in a town (Lee et al. 2018), identifying clusters of nearby 

area units that show an elevated risk of disease compared with neighboring areas (Anderson, Lee, 

and Dean 2014), and estimating the effect of a risk factor on a response. Frequently, sets of auto-

correlated random effects are employed to replicate the spatio-temporal autocorrelation in these data 

through a Bayesian inferential technique. These random effects are typically allocated with spatio-

temporal extensions of Conditional Autoregressive (CAR) priors to capture this autocorrelation. 

This study offers Bayesian hierarchical models using the poison distribution priors to predict the 

spatio-temporal data on associated simulated data and measles data. 

Although there are numerous methods for dealing with spatial (S.P.) time-to-event data (e.g., 

Banerjee and Carlin, 2004. Choi and Lawson, 2011; Zhou et al., 2020; Lee and Pettersson, 2021), 

Conversely This Study, therefore, extends the work of Lee and Pettersson, 2021 where existing S.P. 

models either ignore spatial autocorrelation and interaction effect altogether. Thus, we shall present 

the best model that has the power to overcome these limitations as well as the flexibility for 

researchers to model spatial clustering in their disease data. This study, therefore, provides Bayesian 

hierarchical models for estimating the spatio-temporal data from related simulated data. 
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This study is significant because of its wide applications. The model consideration will help 

investigate, measure, analyze, and model spatial data features, such as places, characteristics, and 

their connections, that disclose the geometric or geographic characteristics of measles infections 

and other relevant data. The findings will assist in supplying the data that pinpoints the locations of 

features and boundaries where cases of measles are much more prevalent over time. Furthermore, 

this study will allow experts in the fields of science, sociology, psychology, epidemiology, biology, 

business, and marketing (among others) to understand better human behaviors, environmental 

factors, and relationships between people and a location. 

 

1.1. Research Question  

There is an urgent need for a comprehensive study that addresses the following research questions: 

i. Is the Bayesian Hierarchical spatio-temporal model appropriate for capturing the 

autocorrelation and interaction effect in the data for poison prior across the areal units and 

periods? 

ii. Is the model investigated above consistent with capturing the measles data simulated from 

different regions at consecutive periods and distribution 

 

1.2 Aim and Objectives 

The objectives of the study are 

i. To provide an appropriate for capturing the autocorrelation and interaction effect in the data 

for poison prior across the areal units and periods 

ii. To determine whether the model investigated above is consistent in capturing the measles 

data simulated from different regions at consecutive periods and distribution 

 

2. RESEARCH METHODOLOGY 

The model's effectiveness described in the preceding section is evaluated using a simulation 

procedure, focusing on the models' capacity to accurately estimate the varying degrees of temporal 

trend and geographical variability. Simulated measles incidence data are generated from binomial, 

poison and negative binomial distributions for the K = 5, 10 and 15 areal units and t =20, 50, 100 

and 200 time periods. The areal units and periods are varied to assess the models' performance. The 

logit probability surface is generated from multivariate normal distributions. 

The K × K neighborhood matrix 𝑊 =  (𝑤𝑘𝑗) where W is K x K matrix,  

𝑊 =  (𝑤𝑘𝑗) = (

𝑤11 ⋯ 𝑤1𝑘

⋮ ⋱ ⋮
𝑤𝑘1 ⋯ 𝑤𝑘𝑘

) 

It is used in all models in this study to induce spatial autocorrelation into the response data Y through 

the latent component M. W typically consists of binary elements, where the value of wkj = 1 if areal 

units (Sk, Sj) share a common border (i.e., are spatially close) and is zero otherwise. Additionally, 

when the value of 𝑤𝑘𝑗 = 0. This indicates that spatially adjacent areal units (Sk, Sj), (Mkt, Mjt) are 

spatially auto-correlated. In contrast, values for non-neighboring areal units are conditionally 

independent given the remaining {Mit} values. This binary specification of W based on sharing a 
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common border is the most commonly used for areal data, but CARBayesST only requires that W 

be symmetric and contain non-negative elements. Similarly, the model S.T.CARanova () employs 

a binary N × N temporal neighborhood matrix 𝐷 = (𝑑𝑡𝑗), where𝑑𝑡𝑗 = 1, if |j − t| = 1 and𝑑𝑡𝑗 = 0, 

otherwise.  

 

2.1 Research Design 

This study will partition the region into K = 1...k (Where k = 5, 10 and 15 areal units). The areal 

units studied constitute different communities, and data on generated measles susceptibility was 

obtained over time periods T (where T= 20, 50, 100, and 200). Bayesian hierarchical logistic 

regression models with poison prior were used to fit and evaluate its performance on the simulated 

data to get the best among them. 

 

2.2 Population, sample and sample technique of the study 

The population of this study will comprise local government areas in Taraba state of Nigeria, and 

three local government areas will be considered from each of the three senatorial districts in Taraba 

state to make a total number of nine samples. Sample data on measles across the local governments 

were considered using random sampling. The data shall be collected across the region for 30 years 

or 30 months. 

 

2.3Method of data collection 

The data collection method will be simulations based on different distributions. Secondary data on 

measles cases will also be obtained from the general hospital across the selected local government 

area. The research will cover the following Local government areas in Taraba state: Bali, Zing, 

Wukari, Donga, Gassol, Jalingo, Gashaka, Takum and Lau. 

 A simulation study was carried out to evaluate the effect of poison, binomial, and negative 

binomial distributions described in the next sections, particularly the accuracy in estimating the 

varying degrees of temporal trend and spatial variability. Simulated measles incidence data are 

generated from poison distribution for the k = 5, 10 and 15 areal units and T= 20, 50, 100 and 200 

times period. The population sizes are varied to assess the models' performance in case simulation. 

 

2.4 Technique for Simulation and Data Analysis 

The technique for the data analysis is Bayesian hierarchical logistic regression models with poison 

prior, which was used to model the simulated data and determine when the best is fitted across areal 

units and time periods. Our Bayesian hierarchical model has the following prior distribution. 

𝑌𝑘𝑡~𝑝𝑜𝑖𝑠(𝑁𝑡, 𝜃𝑘𝑡) 

ln (
𝜃𝑘𝑡

1 − 𝜃𝑘𝑡
) = 𝑌𝑘𝑡

′ 𝛽 + 𝛿𝑡 + 𝑒𝑡                             (1) 

The measles susceptibility logit probabilities are represented as a linear mixture of two random 

effects, a px1 vector Ykt of covariates and their corresponding regression parametersβ, δt and et. 

Upon the regression parameters β, a multivariate normal prior distribution is applied,  
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𝛽~𝑁(0, 𝐼) 

Where Ipxp is the identity matrix, after the covariate effects are considered, the random effects δt 

and et are added to the data to represent the temporal and spatial trends and autocorrelation. The 

temporal random effects come first. The random walk of order one prior distribution for et=e1 e2,…, 

eN is provided as follows. 

𝑒𝑡~𝑁(𝑒𝑡−1, 𝜎2), 𝑡 = 1,2, … , 𝑁 

The 𝑒𝑡will be varied for different prior distributions as follows  

𝑒𝑡~𝑈𝑛𝑖𝑓(𝑒𝑡−1, 𝜎2), 𝑡 = 1,2, … , 𝑁 

𝑒𝑡~𝑒𝑥𝑝(𝑒𝑡−1, 𝜎2), 𝑡 = 1,2, … , 𝑁 

𝜎2~𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑔𝑎𝑚𝑚𝑎(0.1,0.1) 

The effect at the prior time period, et-1, is the mean of the temporal random effect at time period t. 

Thus, the temporal random effects capture the overall temporal trend in the region's vulnerability to 

measles.  

 

2.5 Spatio-Temporal Interaction Effect for areal unit data 

The most common modeling approaches utilize a main effect, interaction effect or an autoregressive 

structure (Rushworth et al., 2014). Different levels of this effect will be examined in the model. 

Data simulation techniques are used to estimate the number of susceptible measles cases (𝑦𝑖𝑡) per 

year and the number of children visiting the hospital (𝑛𝑖𝑡). The interaction effect (𝛾𝑘𝑡) is 

incorporated in (1) to five (2) as follows 

ln (
𝜃𝑘𝑡

1 − 𝜃𝑘𝑡
) = 𝑋𝑘𝑡

′ 𝛽 + 𝛿𝑡 + 𝛾𝑘𝑡 + 𝑒𝑡                              (1) 

 𝛾𝑘𝑡/𝜇𝑡~𝑁(0,𝜇𝑡
2) 

Where 𝜃𝑘𝑡 Is the estimated likelihood of having measles at a particular region and time? The 

remaining terms in the linear predictor are 𝛿 = (𝛿1, 𝛿2, . . 𝛿𝑁) and 𝑒 = (𝑒1, 𝑒2, … , 𝑒𝑁). What are the 

overall spatial and temporal trends in the estimated probability?𝜃𝑘𝑡. 

𝛾𝑘𝑡/𝜇𝑡~𝑁(0,𝜇𝑡
2) As an interaction effect, its mean values also varied in the simulations to investigate 

the strength of the spatio-temporal interaction effect on the data. 

 

2.6 Spatio-Temporal Models for Mkt 

Using a K × K neighborhood matrix W = (wkj), all models in this study produce spatial 

autocorrelation in the response data Y through the latent component M. W typically contains binary 

elements, where wkj = 0 otherwise and one if areal units (Sk, Sj) are spatially close to one another or 

share a shared border. Furthermore, wkk = 0. This indicates that while values for non-neighboring 

areal units are conditionally independent given the remaining {Mit} values, those for geographically 

nearby areal units (Sk, Sj) have a spatial auto-correlated relationship (Mkt, Mjt). The most popular 

binary specification of W for areal data is this one, which is based on having a shared boundary; 

however, CARBayesST requires that W be symmetric and have non-negative elements.  

The spatial and temporal main effects and space-time interaction model Knorr-Held (2000) put forth 

are similar to the S.T.CARanova model. The model is considered to fit our simulated data of 
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different distribution categories, parameter values/ levels, levels of an interaction effect, 

autocorrelation levels and sample sizes to estimate the susceptibility of measles across the regions. 

The details of the model's description are given below. 

 

2.7 S.T.CARanova 

The model is a modification of that proposed by Knorr-Held (2000) and is given by 

𝑀𝑘𝑡  =  ∅𝑘 + 𝛿𝑡  +  𝛾𝑘𝑡                                (2) 

∅𝑘 ∼ 𝑁 (
𝜌𝑆 ∑ 𝑤𝑘𝑗∅𝑗

𝑘
𝑗=1

𝜌𝑆 ∑ 𝑤𝑘𝑗∅𝑗 + 1 − 𝜌𝑆
𝑘
𝑗=1

 ,
𝜏𝑆

2

𝜌𝑆 ∑ 𝑤𝑘𝑗∅𝑗 + 1 − 𝜌𝑆
𝑘
𝑗=1

) 

𝛿𝑘 ∼ 𝑁 (
𝜌𝑇 ∑ 𝑤𝑘𝑗𝑑𝑡𝑗𝛿𝑗

𝑘
𝑗=1

𝜌𝑇 ∑ 𝑑𝑡𝑗 + 1 − 𝜌𝑇
𝑘
𝑗=1

 ,
𝜏𝑇

2

𝜌𝑇 ∑ 𝑑𝑡𝑗 + 1 − 𝜌𝑇
𝑘
𝑗=1

) 

𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 

𝜌𝑆, 𝜌𝑇 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1),  

𝛾𝑘𝑡 ∼ 𝑁(µ𝛼 , 𝜏𝐼
2). 

In this case, the CAR prior suggested by Leroux et al. (2000) models both the spatio-temporal 

autocorrelation and a standard set of spatial random effects, ∅ = (∅1,...,∅k), and a standard set of 

temporal random effects, δ = (δ1,...,δk). Furthermore, the model can optionally include a collection 

of separate space-time interactions γ = (γ11... γkt), which can be indicated in the function call by 

passing in the argument interaction=TRUE (the default). Every random effect set has a mean center. 

For the remaining parameters, fixed uniform (𝜌𝑆, 𝜌𝑇) and conjugate (𝜏𝑆
2, 𝜏𝑇

2 , 𝜏𝐼
2I) priors are supplied; 

default values for the latter are (a = 1, b = 0.01). Alternatively, instead of estimating the dependence 

parameters (𝜌𝑆, 𝜌𝑇) in the model, they can be fixed at values in the unit interval [0, 1] 

 

4. ANALYSIS AND RESULTS  

 

4.1. Model Fitting and Summary of the Numerical Results on 5-Areal unit when there is 

Interaction and Autocorrelation effect  

The simulation for 5-arealUnit at different periods is carried out to fit the spatial-temporal model 

and to illustrate the appropriateness of the model fitting across the arealUnit and period to establish 

the objective. We assume here that the data comes from Poisson likelihood. Before making an 

inference from the model, we have to ensure the Markov chains appear to have converged, and a 

single chain diagnostic is the Z-score proposed by Geweke (2022) and given in the model summary 

in the table.1 (Geweke. diag), where convergence is suggested if the Z-score lies within (−1.96, 

1.96). Table 1 includes parameter estimates (Mean values), 95% credible intervals (2.5% and 

97.5%) of the parameter and convergence diagnostics (n effective and Geweke. diag) for specific 

parameters, as well as overall model fit measures such as the DIC. We assume here that the 

interaction terms γkt are absent and that the data come from a Poisson likelihood. Where 𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇 

The estimated probability of having measles is at a particular region and time. 𝜌𝑠 and  𝜌𝑇 These are 

the interactions between an areal unit and time period and the autocorrelation effect. 
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Table 1: Spatio-temporal models for five areal unit data over 20, 50, 100 and 200 time periods 

with interaction and autocorrelation effect  

K x T T Mean 2.5% 97.5% n.effec

tive 

Gewek

e.diag 

DIC p.d LMPL 

 

 

5X20 

Intercept 4.0377 4.0316 4.0437 4787.8 0.6  

 

13911.7 

 

 

96.237 

 

 

-6958.89 

𝜏𝑠 0.0094 0.0065 0.0130 5200.9 1.7 

𝜏𝑇 0.0132 0.0070 0.0243 5000.0 0.3 

𝜌𝑠 0.9281 0.7949 0.9940 4544.9 -1.1 

𝜌𝑇 0.7169 0.3050 0.9654 5000.0 -0.7 

 

 

5X50 

Intercept 3.9600 3.9522 3.9679 5000.0   0.1  

 

8674.58 

 

 

68.489 

 

 

-4341.8 

𝜏𝑠 0.0092 0.0055 0.0206 4860.3 -0.3 

𝜏𝑇 0.0116 0.0102 0.0244 4607.9 -1.0 

𝜌𝑠 0.6957 0.0689 0.9247 4553.3 1.6 

𝜌𝑇 0.8176 0.5829 0.9624 4733.8   0.5 

 

 

5X100 

Intercept 3.8549 3.8491 3.8608 5000.0 0.7  

 

16833.6 

 

 

108.01 

 

 

-8418.3 

𝜏𝑠 0.0090 0.0049 0.0160 5000.0 1.6 

𝜏𝑇 0.0088 0.0061 0.0124 4600.3 -1.4 

𝜌𝑠 0.6393 0.2085 0.9570   5000.0 1.1 

𝜌𝑇 0.9507 0.8822 0.9905 4457.5 0.4 

 

 

 

5X200 

Intercept 3.9603 3.9560 3.9644 4138.0 -1.6  

 

 

34135.9 

 

 

 

198.57 

 

 

 

-17069.3 

𝜏𝑠 0.0078 0.0042 0.0137 5000.0 0.4 

𝜏𝑇 0.0068 0.0077 0.0123 4597.5 1.0 

𝜌𝑠 0.6127 0.1758 0.9524 4817.2 -1.0 

𝜌𝑇 0.9864 0.9688 0.9971 5000.0 -0.8 
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Fig.1a:  Estimated parameter values of measles from 5 areal units over some time  

 

 
Fig.1b: Estimated interaction and autocorrelation of 5 areal units and periods  

 

The table above shows the output describing the model fitted on five areal unit data at t = 1, 2, 3… 

20; 50; 100 and 200 time periods, and a summary of the numerical results. The estimated Values of 

the measles susceptibility at a particular region and time (𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇) is presented in Figure 1a, while 

the correlation between an areal unit and period and autocorrelation effect, respectively (𝜌𝑠 and𝜌𝑇) 

is displayed in Figure 1b. From Figure 1a, both values of 𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇 These decrease as the period 

increases by five units. Indeed, the estimated measles susceptibility decreases over time. Figure 1b 

shows that the 𝜌𝑠 decreases while 𝜌𝑇 Increases over the period. This shows that the interaction 

between small arealUnit and period decreases as time increases while the autocorrelation increases. 

The spatial-temporal model is more fitted to 5 areal units when the period is 50 (5x50) due to its 

minimum DIC and P.D. and maximum value of LMPL. 
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4.2 Model Fitting and Summary of the Numerical Results on 10-Areal unit when there is 

Interaction and Autocorrelation effect 

The simulation for 10-arealUnit at different periods is carried out to fit the spatial-temporal model 

and to illustrate the appropriateness of the model fitting across the arealUnit and period to establish 

the objective. We assume here that the data comes from Poisson likelihood. Before making an 

inference from the model, we have to ensure the Markov chains appear to have converged. A single 

chain diagnostic is the Z-score proposed by Geweke(2022)  and given in the model summary in 

Table 2 (Geweke. diag), where convergence is suggested if the Z-score lies within (−1.96, 1.96). 

Table 2b includes parameter estimates (Mean values), 95% credible intervals (2.5% and 97.5%) of 

the parameter and convergence diagnostics (n effective and Geweke. diag) for specific parameters, 

as well as overall model fit measures such as the DIC. We assume here that the interaction terms 

γkt are absent and that the data come from a Poisson likelihood. Where  

𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇 are estimated probability of having measles at a particular region and time, respectively 

𝜌𝑠 and 𝜌𝑇 Are interactions between an areal unit and period and autocorrelation effect, respectively? 

 

Table 2: Spatio-temporal models for ten areal unit data over 20, 50, 100 and 200 time periods 

with interaction and autocorrelation effect from poison prior 

KXT T Mean 2.5% 97.5% n.effec

tive 

Gewek

e.diag 

DIC p.d LMPL 

 

 

10X20 

Intercept 4.221 4.2151 4.2268 5000.0 1.0  

 

14233.6 

 

 

103.68 

 

 

-7119.0 

𝜏𝑠 0.012 0.0087 0.0170 5000.0 0.6 

𝜏𝑇 0.014 0.0073 0.0287 4795.4 0.2 

𝜌𝑠 0.868 0.6593 0.9863 4409.0 -0.8 

𝜌𝑇 0.955 0.8480 0.9973 4036.7 0.1 

 

 

10X50 

Intercept 4.241 4.2384 4.2454 3692.5 -0.4  

 

35667.6 

 

 

142.00 

 

 

-17836.9 

𝜏𝑠 0.017 0.0087 0.0168 5000.0 -0.8 

𝜏𝑇 0.012 0.0078 0.0179 5000.0 -0.3 

𝜌𝑠 0.744 0.4627 0.9615 5000.0 -1.7 

𝜌𝑇 0.864 0.6786 0.9751 4726.2 -0.3 

 

10X10

0 

Intercept 4.241 4.2384 4.2454   3692.5 -0.4  

 

35667.6 

 

 

142.00 

 

 

-17836.9 

𝜏𝑠 0.018 0.0087 0.0168 5000.0 -0.8 

𝜏𝑇 0.011 0.0078 0.0179   5000.0 -0.3 

𝜌𝑠 0.634 0.4627 0.9615 5000.0 -1.7 

𝜌𝑇 0.864 0.6786 0.9751 4726.2 -0.3 

 

 

10X20

0 

Intercept 4.241 4.2384 4.2454 3692.5 -0.4  

 

35667.6 

 

 

142.00 

 

 

-17836.9 

𝜏𝑠 0.018 0.0087 0.0168   5000.0 -0.8 

𝜏𝑇 0.009 0.0078 0.0179 5000.0 -0.3 

𝜌𝑠 0.511 0.4627 0.9615 5000.0 -1.7 

𝜌𝑇 0.864 0.6786 0.9751      4726.2 -0.3 
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Fig.2a:  Estimated parameter values of measles from 10 areal units over some time  

 

 
Fig.2b: Estimated interaction and autocorrelation of 10 areal units and periods 

 

Table 2 shows the output that describes the model fitted on ten areal unit data at t = 1, 2, 3… 20; 

50; 100 and 200 time periods, and a summary of the numerical results. The estimated values of the 

measles susceptibility at a particular region and time (𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇) is presented in Figure 2a, while 

interaction between an areal unit and period and autocorrelation effect, respectively (𝜌𝑠and𝜌𝑇) is 

displayed in Figure 2b. From figure2a, values of 𝜏𝑠  𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑤ℎ𝑖𝑙𝑒 𝜏𝑇 They decrease as the 

period increases unit. Units Indeed, the estimated measles susceptibility increases over time. Figure 

2b shows that both values of 𝜌𝑠 and  𝜌𝑇 Decreases over period. This shows that the interaction 

between small arealUnit and period decreases as time increases, and the autocorrelation also 
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decreases. The spatial-temporal model is more fitted to 10 areal units when the time period is 20 

(10x20) due to its minimum DIC and p.d and maximum value of LMPL. 

 

4.3.    Model Fitting and Summary of the Numerical Results on 15-Areal Unit data over 20, 

50, 100 and 200 time periods with interaction and autocorrelation effect 

The simulation for 15-arealUnit at different periods is carried out to fit the spatial-temporal model 

and to illustrate the appropriateness of the model fitting across the arealUnit and period to establish 

the objective. We assume here that the data comes from Poisson likelihood. Before making an 

inference from the model, we have to ensure the Markov chains appear to have converged. A single 

chain diagnostic is the Z-score proposed by Geweke(2022)  and given in the model summary in 

Table 3 (Geweke. diag), where convergence is suggested if the Z-score lies within (−1.96, 1.96). 

Table 3 includes parameter estimates (Mean values), 95% credible intervals (2.5% and 97.5%) of 

the parameter and convergence diagnostics (n effective and Geweke. diag) for specific parameters, 

as well as overall model fit measures such as the DIC. We assume here that the interaction terms 

γkt are absent and that the data come from a Poisson likelihood. Where  

𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇 Are estimated probability of having measles at a particular region and time respectively. 

𝜌𝑠 and 𝜌𝑇 The interaction between an areal unit and period and the autocorrelation effect are as 

follows: 

 

Table 3: Spatio-temporal models for 15 areal unit data over 20, 50, 100 and 200 time periods 

with interaction and autocorrelation effect from poison prior.  

KXT T Mean 2.5% 97.5% n.effec

tive 

Gewek

e.diag 

DIC p.d LMPL 

 

 

 

 

15X20 

Intercept 4.178 4.174 4.1816 4790.8 -1.2 31701.2 189.29 -15851.7 

𝜏𝑠 0.007 0.0057 0.0093 4380.9 -1.7 

𝜏𝑇 0.010 0.0055 0.0185 5000.0 1.7 

𝜌𝑠 0.839 0.6480 0.9744 4423.0 -0.6 

𝜌𝑇 0.570 0.1251 0.9233 4584.4 -0.8 

 

 

15X50 

Intercept 4.074 4.1555 4.3683 4534.2 0.7  

 

25849 

 

 

123.76 

 

 

-12894.1 

𝜏𝑠 0.008 0.0523 0.0825 5000.5 -1.6 

𝜏𝑇 0.010 0.1567 0.0131 4054.8 0.9 

𝜌𝑠 0.822 0.6259 0.9107 3815.1 -0.5 

𝜌𝑇 0.557 0.0362 0.4249 4275.4 -0.7 

 

 

15X100 

Intercept 3.953 3.9474 3.9596 4554.5 0.6  

 

5778.90 

 

 

287.17 

 

 

-2598.6 

𝜏𝑠  0.009 0.0066 0.0130 5000.0 -1.3 

𝜏𝑇 0.006 0.0034 0.0116 5000.0 1.8 

𝜌𝑠 0.816 0.6049 0.9014 4012.0 0.4 

𝜌𝑇 0.513 0.0768 0.9047 4000.0 -0.4 

 Intercept 4.035 4.0261 4.0444 4703.7 1.6 6921.44 148.61 -3457.63 
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15X200 

𝜏𝑠 0.010 0.0047 0.0120 3956.2 0.1 

𝜏𝑇 0.018 0.0066 0.0464 5000.0 0.1 

𝜌𝑠 0.590 0.2248 0.9168 3701.9 -1.4 

𝜌𝑇 0.499 0.0260 0.3939 3929.0 0.0 

          

          

 
Fig.3a:  Estimated parameter values of measles from 15 areal units over some time 

 

 

 
Fig.3b: Estimated interaction and autocorrelation of 15 areal units and periods 

 

Table 3 shows the output that describes the model fitted on 15 areal unit data at t = 1, 2, 3… 20; 50; 

100 and 200 time periods, and a summary of the numerical results. The estimated values of the 
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measles susceptibility at a particular region and time (𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇) is presented in Figure 3a, while 

interaction between an areal unit and period and autocorrelation effect, respectively (𝜌𝑠and𝜌𝑇) is 

displayed in Figure 3b. From Figure 4.3a, both values of 𝜏𝑠 𝑎𝑛𝑑 𝜏𝑇 Are increasing as the period 

increases by 15 areal units. Indeed, the estimated measles susceptibility increases over time. Figure 

4.3b shows that both values of 𝜌𝑠 and  𝜌𝑇 Decreases over period. This shows that the interaction 

between small arealUnit and period decreases as time increases, and the autocorrelation also 

decreases. The spatial-temporal model is more fitted to 15 areal units when the period is 100 

(15x100) due to its minimum DIC and p.d and maximum value of LMPL. 

 

5. CONCLUSION 

This study provided an appropriate model for capturing the autocorrelation and interaction effects 

in the spatiotemporal data for poison prior across the areal units and periods. It determined a suitable 

model for measles-generated data from non-overlapping regions at consecutive periods. The 

distributions through simulation with the following result achieved. The findings show that the 

interaction between small area units and periods decreases as time increases while the 

autocorrelation increases for 5 area units. The spatial-temporal model is more fitted to 5 areal units 

when the period is 50 (5x50) due to its minimum DIC and P.D. and maximum value of LMPL. 

Also, in 10 area units, the interaction between small area units and periods decreases as time 

increases, and autocorrelation decreases. The spatial-temporal model is more fitted to 10 areal units 

when the period is 20 (10x20). Finally, under 15 areal units, the interaction between small arealUnit 

and period decreases as time increases, and the autocorrelation also decreases. The spatial-temporal 

model is more fitted to 15 areal units when the period is 100 (15x100) due to its minimum DIC and 

p.d and maximum value of LMPL. 

 

6. LIMITATIONS OF THE STUDY 

This study is limited to areal units partitioned into K = 1... k (Where k = 5, 10, 15 areal units). The 

region under study constitutes different communities with data obtained over periods t (where t = 

1, 2, 3…). To get the best among them, Bayesian hierarchical logistic regression models with only 

poison prior were used to model the simulated measles data. The simulations based on the earlier 

distribution were carried out, and the model was assessed. 

 

7.         IMPORTANCE OF FINDINGS  

This study is significant because of its wide applications. To identify the geometric or geographic 

characteristics of measles diseases and other relevant data, the model under consideration will assist 

in investigating, assessing, evaluating, and modeling spatial data features, such as locations, 

qualities, and their interactions. The outcomes will help provide information that explains the 

characteristics and boundaries of the areas where measles cases are much more prevalent over time. 

Furthermore, this study will allow experts in the fields of science, sociology, psychology, 

epidemiology, biology, business, and marketing (among others) to understand better human 

behaviors, environmental factors, and relationships between people and a location. 
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8. FURTHER RESEARCH 

Further research can use spatiotemporal model for fitting and forecasting in a real life data of 

measles from different areal units and regions at different time periods. 
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