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ABSTRACT 

Broad coverage syntactic parsers such as Charniak’s parser and Collin’s parser produce as output a 

parse tree that only encodes local syntactic information that is a tree that does not include any empty 

nodes. This work presents a boosting classifier tree for modification of such parsers to add a wide 

variety of empty nodes and their antecedents to their parse trees. Evaluation metrics(precision, recall 

and F-score) were  use in order to compare the performance of recovering empty nodes on parser 

output with the empty nodes annotations in the Penn Treebank. This evaluation of the boosting 

classifier tree (boosting algorithm) on the output of broad coverage syntactic parsers and Penn 

Treebank achieves high F-score on most types of empty nodes which leads to high parsing accuracy. 
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1. BACKGROUND OF THE STUDY 

Empty elements (Empty nodes) in the syntactic analysis of a sentence are markers that show where a 

word or phrase might otherwise be expected to appear, but does not (Cai et al., 2011). They play an 

important role in understanding the grammatical relations in the sentence. For example, in the tree of 

Fig. 1.1, the first empty element (*) marks where John would be if believed were in the active voice 

(someone believed), and the second empty element (*T*) marks where the man would be if who were 

not fronted (John was believed to admire who?). Empty elements exist in many languages and serve 

different purposes. In languages such as Chinese and Korean, where subjects and objects can be 

dropped to avoid duplication, empty elements are particularly important, as they indicate the position 

of dropped arguments (Cai et al., 2011). 
                      S 
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                  NNP     VBN                 S 

 

                 John believed  NP               VP 

 

                                      NONE  TO              VP 

  

                                          *       to      VB                    NP 

 
                                                         Admire             NONE 

 

                                                                                    *T* 

 

Fig. 1.1 Parse tree with empty elements marked as annotated in the Penn Treebank (Cai et al., 2011). 

 

The Penn Treebank (Marcus et al., 1993) contains detailed annotations of empty elements. Yet 

most parsing work like Charniak’s and Collins’s parser based on these resources has ignored empty 

elements, with some notable exceptions. Johnson (2002) studied empty element recovery in English, 

followed by several others (Zhang and Clark,2008;Martins et al., 2009; Goldberg  and Elhadad, 2010; 

Zhang and Nivre, 2011; Cai et al., 2011; Zhu et al.. 2012); Recently, empty-element recovery for 
Chinese has begun to receive attention: Yang and Xue (2010) treat it as classification problem, while 

Chung and Gildea (2010) pursue several approaches for both Korean and Chinese, and explore 

applications to machine translation. 

The intuition motivating this work is that empty elements are an integral part of syntactic 

structure, and should be constructed jointly with it, not added in afterwards. Moreover, empty-element 

recovery is expected to improve as the parsing quality improves. In this work, boosting algorithm will 

be used to recover the empty elements and their antecedents. 
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2. MATERIALS AND METHODS 

This part consists of sections namely: training corpus, Arcing Game Value (Arc-GV) Boosting 

Algorithm, Decision Stumps, Pre-order Traversal for Empty Node Insertion and Evaluation Metrics. 

  

2.1 Training Corpus  

Training corpus is a text corpus in which each sentence annotated with syntactic structure has been 
parsed. In this work, a Wall Street Journal (WSJ) of the Penn Treebank is used as a training corpus. 

The patterns are extracted from this corpus after the preprocessing of the corpus. The preprocessing 

step relabels auxiliary verbs and transitive verbs in all trees in the training corpus. This relabelling is 

deterministic and depends only on the terminal (i.e., the word) and its preterminal label. Auxiliary 

verbs such as is and being are relabelled as either an AUX or AUXG respectively. The relabelling of 

auxiliary verbs was performed primarily because Charniak's parser (which produced one of the test 

corpora) produces trees with such labels. The transitive verb relabelling suffixes of the preterminal 

labels of transitive verbs with t value. For example, in Fig. 2.1 the verb likes is relabeled VBZ_t in this 

step. A verb is deemed transitive if its stem is followed by an NP without any grammatical function 

annotation at least 50% of the time in the training corpus; all such verbs are relabelled whether or not 

any particular instance is followed by an NP. Intuitively, transitivity would seem to be a powerful cue 

that there is an empty node following a verb.  
 

                                           NP 

                        NP                                    SBAR 

                 DT        NN               WHNP-1                   S 

               The        man                NONE           NP               VP 

                                                       0                NNP     VBZ_t NP 

                                                                         Sam     likes           NONE 

 

                                                                                                        *T*-1 

Fig 2.1 parse tree containing empty nodes (Johnson, 2002) 

 

2.2 Arcing Game Value (Arc-GV) Boosting Algorithm 
Arcing game value (Arc GV) boosting algorithm takes as its inputs a training data  (training corpus) T 

= {(xi, yi)}  , where xiis a labeled ordered tree and yi  ε {±1} is a class label associated with each 

training data (the focus here is the problem of binary classification). The idea of Arc-GV boosting is to 
combine many rules of thumb which are called weak hypotheses. Arc-GV Boosting assumes access to 

an algorithm or subroutine for generating weak hypotheses called the weak learner. Arc-GV Boosting 

can be combined with any suitable weak learner; the one used in this work is decision stump. 

Input: T = (x1, y1), (x2, y2), . . . , (xL, yL) 

                 where  xi∈ X,   yi∈ {−1, 1}, Q 

          Output: Parse trees wth their margins 

1. Initialization: di= 1/L. 

2. for  k = 1 to Q do 

a. Train base learner using distribution di 

b.  Get base classifier : X → {−1, 1}. 

c. Calculate the edge 𝛄k :  of  𝛄k= i (xi) 

d. if |𝛄k| = 1, then αr = 0, for r = 1, . . . , k − 1; αk= sign(𝛄k); break 

e. ek = 𝛄r 

f. Set αk = 1/2log(1+𝛄k/1-𝛄k) – 1/2log(1+ek/1-ek) 

g. Updates weights: = exp(-αkyi (xi))/Zk such that i
(k+1)=1 

3. f(x) = sgn( k (x)) 

4. Return  f(x) 

 

: Arc-GV Boosting Algorithm 

 

Arc-GV Boosting calls the weak learner (decision stumps) repeatedly in a series of rounds. On 

round Q, Arc-GV Boosting provides the weak learner with a set of importance weights over the 

training set. In response, the weak learner takes a parse tree without empty nodes t with its class label y 

value to compute a hypothesis that maps each example x value to a real number (x). 
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The sign of this number is interpreted as the predicted class (-1 or +1) of example x value, while the 

magnitude [ (x)] is interpreted as the level of confidence in the prediction, with larger values 

corresponding to more confident predictions. 

The importance weights are maintained formally as a distribution over the training corpus, di 

is used to denote the weight of the ith training example (xi, yi) on the Qth round of boosting. Initially, 

the distribution is uniform. Having obtained a hypothesis from the weak learner, Arc-GV 

boosting updates the weights by multiplying the weight of each example I value by exp(-

αkyi (xi)). If incorrectly classified example i so that (xi) and yi disagree in sign, 

then this has the effect of increasing the weight on this example, and conversely the weights of 
correctly classified examples are decreased. Moreover, the greater the confidence of the prediction (that 

is, the greater the magnitude of (xi)), the more drastic will be the effect of the update. The 

weights are then renormalized, resulting in the update rule of the algorithm. After Q rounds, Arc-GV 

outputs the final hypotheses f value, which is a linear combination of Q hypotheses produced by the 

prior weal learners that is  

f(x) = sgn( k (x)) 

2.3 Decision Stumps  

Decision stumps are simple classifiers, where the final decision is made by only a single hypothesis or 

feature. Let t and x be parse tree without empty nodes and tree in the training corpus respectively, and y 

is a class label (y ε {±1}), a decision stump classifier is given by 

 

 y  t⊆  x 

                                   h(t, y) (x)  

 -y  otherwise. 
 

 

The parameter for classification is the tuple (t, y) , hereafter referred to as the rule of the 

decision stumps.The decision stumps are trained to find subtree that minimizes the margin for the given 

training data(training corpus)T = {(xi, yi)} . When boosting algorithm called the decision stumps in 

Q rounds, edges will be given by 

𝛄k= i (xi)                                                                                  (1) 

and the minimum margin of the tuple (tk, yk) is 

Margin (tk, yk) = 𝛄r                                                                                                                    (2) 

Equation (2) indicates that there is Q subtrees which the decision stumps use the margin of the 

subtrees to select the optimal subtree that is the one with maximum margin among the minimum 

margins and return it. The margin of the optimal subtree is given by 

   Margin (optimal subtree) = max margin (tk, yk)                                (3) 

 

2.4  Pre-order Traversal for Empty Node Insertion  
The optimal subtree returned by the decision stumps is traversed in order to insert empty nodes and 
their antecedents. The procedure that insert empty nodes into a tree (optimal subtree) not containing 

empty nodes is as follows: a pre-order traversal of the subtrees of tree is performed and at each subtree 

the set of patterns that are classified is found. If this set is non-empty the highest ranked pattern in the 

set is substituted into subtree, inserting an empty node and (if required) co-indexing it with its 

antecedents which is the output of the boosting classification’s system. 

The use of a pre-order traversal effectively biases the procedure toward “deeper”, more 

embedded patterns. Since empty nodes are typically located in the most embedded local trees of 

patterns (that is movement is usually “upward in a tree), if two different patterns corresponding to 

different non-local dependencies) could potentially insert empty nodes into the same tree fragment in 

tree, the deeper pattern will be classified at higher node in tree and hence will be substituted. Since the 

substitution of one pattern typically destroys the context for a classification of another pattern, the 
shallower patterns are no longer classified.  
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2.5 Evaluation Metrics 

The evaluation metrics used for empty node recovery are: precision (P), recall (R), and f-score (F1). 

Let H be the number of an empty node identified correctly, J be the total number of an empty node in 

the training corpus and K be the total number of an empty node reported by the system. Then, the P, R 

and F1 are calculated as follows:      

K

H
P   

J

H
R   

RP

PR
F


 21  

   

3 RESULTS AND DISCUSSION 

 

3.1 Results 

The system is trained on Wall Street Journal of Penn Treebank for 1,000 rounds of boosting with 

different number of input examples for each empty node and the results are summarized in Table 3.1. 

The F-score for empty node and its antecedent is very high in both UNIT *U* and SBAR 0: 98.9% and 

98.6%. The empty node NP *PRO* has a small precision which leads it to low F-score compared with 

the remaining ones in the Table 3.1. 

The system achieves an overall precision of 92.9%, recall of 93.2% and F-score of 93.0% 

which is better than the recent results reported by the reviewed approaches. Table 3.1 gives the empty 

nodes recovery and their antecedents’ score for common empty node types using parse trees lacking 

empty nodes and Wall Street Journal (WSJ) of Penn Treebank.  

 
 

 

 

Table 3.1The empty nodes recovery and their antecedents’ score 

Empty Node Type Precision (%) Recall (%) F-Score (%) 

NP      *PRO* 69.10 87.20 77.10 

S           *T* 98.40 96.00 97.20 

NP          * 96.40 93.80 95.10 

NP        *T* 97.30 95.30 96.30 

UNIT    *U* 98.10 99.70 98.90 

WHNP   0 97.20 89.50 93.20 

ADVP   *T* 88.70 85.70 87.20 

SBAR     0 98.30 98.90 98.60 

Overall 92.90 93.20 93.00 

 

3.2 Discussion  

Table 3.2 shows that the boosting classifier system for empty nodes recovery and their antecedents 
does quite well, managing an F-score of 93.0% higher than the system of Zhang and Nivre (2011) by 

0.1%. However, the system also performs better than the Zhu et al. (2012)’s system, the difference is 

quite small: only 2.7%. Two particular cases of interest are NP-NPs and PRO-NPs. The two are only 

distinguished by their antecedent; NP-NP has an antecedent in the tree, while PRO-NP has none. The 

system has, for most types of empty nodes, quite high antecedent recovery results, but the difficulty in 

telling the difference between these two cases results in low F-score for antecedent recovery of PRO-

NP, despite the fact that it is among the most common empty node types. Even though this is a 

problem, this system still does quite well: 77.1% for PRO-NP compared to the 69.7% reported by Cai 

et al. (2011).   

 

Table 3.2 Comparison of this system with previous approaches 
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 This system Yang and 

Xue (2010)’s 

system 

Caiet al. 

(2011)’s 

system 

Zhang and 

Nivre 

(2011)’s 

system 

Zhu et al. 

(2012)’s 

system 

Overall   f-

score 

93.00% 72.80% 89.30% 92.90% 90.30% 

NP-PRO 

f-score 

77.10% 66.10% 69.70% 67.30% 67.50% 

 

Fig. 3.1 shows when the system is compared with Yang and Xue (2010)’s system, there is an increase 

of F-score from 72.8% to 93.0%. An error of 3.7% is also reduced by the system when compared with 

Cai et al. (2011)’s model. 

 

 
 

Fig. 3.1 Graph of comparison of this system with previous systems 

 

 

 

 

4   CONCLUSION AND RECOMMENDATION 

 

4.1  Conclusion 

This work presents a method for enriching the output of broad coverage syntactic parsers (parse trees 

without empty nodes) with information that is not provided by the parsers themselves, but is available 

in a Treebank. Using the method with parse trees and Wall Street Journal (WSJ) of Penn Treebank 

allowed the system to recover empty nodes and their antecedents and also the evaluation metrics 

(precision, recall and F-score) were used in order to compare the performance of the systems with the 

reviewed approaches. The results of the system based on boosting classification model show an overall 

high F-score of about 93.0%. But the performance for NP-PRO has room for improvement. 

 

4.2  Recommendation 
The investigation of methods for adding information lacked by the output of broad coverage syntactic 

parsers is needed in order to improve the performance on NP-PRO either dependent or independent of 

the training corpus.  
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