
The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

1

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

ONLINE BOOSTING CLASSIFIER TREE FOR EMPTY NODE RECOVERY IN SENTENCE

ANALYSIS

Afolayan A.Obiniyi
1
, Buhari Wadata

2
 and Nura M. Shagari

3

1
Ahmadu Bello University Zaria Department of Mathematics

2,3Sokoto State University Sokoto Department of Computer Science
aaobiniyi@gmail.com

ABSTRACT

Broad coverage syntactic parsers such as Charniak’s parser and Collin’s parser produce as output a

parse tree that only encodes local syntactic information that is a tree that does not include any empty

nodes. This work presents a boosting classifier tree for modification of such parsers to add a wide

variety of empty nodes and their antecedents to their parse trees. Evaluation metrics(precision, recall

and F-score) were use in order to compare the performance of recovering empty nodes on parser

output with the empty nodes annotations in the Penn Treebank. This evaluation of the boosting

classifier tree (boosting algorithm) on the output of broad coverage syntactic parsers and Penn

Treebank achieves high F-score on most types of empty nodes which leads to high parsing accuracy.

Keywords: empty nodes, boosting algorithm, output of broad coverage syntactic parsers

1. BACKGROUND OF THE STUDY

Empty elements (Empty nodes) in the syntactic analysis of a sentence are markers that show where a

word or phrase might otherwise be expected to appear, but does not (Cai et al., 2011). They play an

important role in understanding the grammatical relations in the sentence. For example, in the tree of

Fig. 1.1, the first empty element (*) marks where John would be if believed were in the active voice

(someone believed), and the second empty element (*T*) marks where the man would be if who were

not fronted (John was believed to admire who?). Empty elements exist in many languages and serve

different purposes. In languages such as Chinese and Korean, where subjects and objects can be

dropped to avoid duplication, empty elements are particularly important, as they indicate the position

of dropped arguments (Cai et al., 2011).
 S

 NP VP

 NNP VBN S

 John believed NP VP

 NONE TO VP

 * to VB NP

 Admire NONE

 T

Fig. 1.1 Parse tree with empty elements marked as annotated in the Penn Treebank (Cai et al., 2011).

The Penn Treebank (Marcus et al., 1993) contains detailed annotations of empty elements. Yet

most parsing work like Charniak’s and Collins’s parser based on these resources has ignored empty

elements, with some notable exceptions. Johnson (2002) studied empty element recovery in English,

followed by several others (Zhang and Clark,2008;Martins et al., 2009; Goldberg and Elhadad, 2010;

Zhang and Nivre, 2011; Cai et al., 2011; Zhu et al.. 2012); Recently, empty-element recovery for
Chinese has begun to receive attention: Yang and Xue (2010) treat it as classification problem, while

Chung and Gildea (2010) pursue several approaches for both Korean and Chinese, and explore

applications to machine translation.

The intuition motivating this work is that empty elements are an integral part of syntactic

structure, and should be constructed jointly with it, not added in afterwards. Moreover, empty-element

recovery is expected to improve as the parsing quality improves. In this work, boosting algorithm will

be used to recover the empty elements and their antecedents.

mailto:aaobiniyi@gmail.com

The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

2

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

2. MATERIALS AND METHODS

This part consists of sections namely: training corpus, Arcing Game Value (Arc-GV) Boosting

Algorithm, Decision Stumps, Pre-order Traversal for Empty Node Insertion and Evaluation Metrics.

2.1 Training Corpus

Training corpus is a text corpus in which each sentence annotated with syntactic structure has been
parsed. In this work, a Wall Street Journal (WSJ) of the Penn Treebank is used as a training corpus.

The patterns are extracted from this corpus after the preprocessing of the corpus. The preprocessing

step relabels auxiliary verbs and transitive verbs in all trees in the training corpus. This relabelling is

deterministic and depends only on the terminal (i.e., the word) and its preterminal label. Auxiliary

verbs such as is and being are relabelled as either an AUX or AUXG respectively. The relabelling of

auxiliary verbs was performed primarily because Charniak's parser (which produced one of the test

corpora) produces trees with such labels. The transitive verb relabelling suffixes of the preterminal

labels of transitive verbs with t value. For example, in Fig. 2.1 the verb likes is relabeled VBZ_t in this

step. A verb is deemed transitive if its stem is followed by an NP without any grammatical function

annotation at least 50% of the time in the training corpus; all such verbs are relabelled whether or not

any particular instance is followed by an NP. Intuitively, transitivity would seem to be a powerful cue

that there is an empty node following a verb.

 NP

 NP SBAR

 DT NN WHNP-1 S

 The man NONE NP VP

 0 NNP VBZ_t NP

 Sam likes NONE

 T-1

Fig 2.1 parse tree containing empty nodes (Johnson, 2002)

2.2 Arcing Game Value (Arc-GV) Boosting Algorithm
Arcing game value (Arc GV) boosting algorithm takes as its inputs a training data (training corpus) T

= {(xi, yi)} , where xiis a labeled ordered tree and yi ε {±1} is a class label associated with each

training data (the focus here is the problem of binary classification). The idea of Arc-GV boosting is to
combine many rules of thumb which are called weak hypotheses. Arc-GV Boosting assumes access to

an algorithm or subroutine for generating weak hypotheses called the weak learner. Arc-GV Boosting

can be combined with any suitable weak learner; the one used in this work is decision stump.

Input: T = (x1, y1), (x2, y2), . . . , (xL, yL)

 where xi∈ X, yi∈ {−1, 1}, Q

 Output: Parse trees wth their margins

1. Initialization: di= 1/L.

2. for k = 1 to Q do

a. Train base learner using distribution di

b. Get base classifier : X → {−1, 1}.

c. Calculate the edge 𝛄k : of 𝛄k= i (xi)

d. if |𝛄k| = 1, then αr = 0, for r = 1, . . . , k − 1; αk= sign(𝛄k); break

e. ek = 𝛄r

f. Set αk = 1/2log(1+𝛄k/1-𝛄k) – 1/2log(1+ek/1-ek)

g. Updates weights: = exp(-αkyi (xi))/Zk such that i
(k+1)=1

3. f(x) = sgn(k (x))

4. Return f(x)

: Arc-GV Boosting Algorithm

Arc-GV Boosting calls the weak learner (decision stumps) repeatedly in a series of rounds. On

round Q, Arc-GV Boosting provides the weak learner with a set of importance weights over the

training set. In response, the weak learner takes a parse tree without empty nodes t with its class label y

value to compute a hypothesis that maps each example x value to a real number (x).

The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

3

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

The sign of this number is interpreted as the predicted class (-1 or +1) of example x value, while the

magnitude [(x)] is interpreted as the level of confidence in the prediction, with larger values

corresponding to more confident predictions.

The importance weights are maintained formally as a distribution over the training corpus, di

is used to denote the weight of the ith training example (xi, yi) on the Qth round of boosting. Initially,

the distribution is uniform. Having obtained a hypothesis from the weak learner, Arc-GV

boosting updates the weights by multiplying the weight of each example I value by exp(-

αkyi (xi)). If incorrectly classified example i so that (xi) and yi disagree in sign,

then this has the effect of increasing the weight on this example, and conversely the weights of
correctly classified examples are decreased. Moreover, the greater the confidence of the prediction (that

is, the greater the magnitude of (xi)), the more drastic will be the effect of the update. The

weights are then renormalized, resulting in the update rule of the algorithm. After Q rounds, Arc-GV

outputs the final hypotheses f value, which is a linear combination of Q hypotheses produced by the

prior weal learners that is

f(x) = sgn(k (x))

2.3 Decision Stumps

Decision stumps are simple classifiers, where the final decision is made by only a single hypothesis or

feature. Let t and x be parse tree without empty nodes and tree in the training corpus respectively, and y

is a class label (y ε {±1}), a decision stump classifier is given by

 y t⊆ x

 h(t, y) (x)

 -y otherwise.

The parameter for classification is the tuple (t, y) , hereafter referred to as the rule of the

decision stumps.The decision stumps are trained to find subtree that minimizes the margin for the given

training data(training corpus)T = {(xi, yi)} . When boosting algorithm called the decision stumps in

Q rounds, edges will be given by

𝛄k= i (xi) (1)

and the minimum margin of the tuple (tk, yk) is

Margin (tk, yk) = 𝛄r (2)

Equation (2) indicates that there is Q subtrees which the decision stumps use the margin of the

subtrees to select the optimal subtree that is the one with maximum margin among the minimum

margins and return it. The margin of the optimal subtree is given by

 Margin (optimal subtree) = max margin (tk, yk) (3)

2.4 Pre-order Traversal for Empty Node Insertion
The optimal subtree returned by the decision stumps is traversed in order to insert empty nodes and
their antecedents. The procedure that insert empty nodes into a tree (optimal subtree) not containing

empty nodes is as follows: a pre-order traversal of the subtrees of tree is performed and at each subtree

the set of patterns that are classified is found. If this set is non-empty the highest ranked pattern in the

set is substituted into subtree, inserting an empty node and (if required) co-indexing it with its

antecedents which is the output of the boosting classification’s system.

The use of a pre-order traversal effectively biases the procedure toward “deeper”, more

embedded patterns. Since empty nodes are typically located in the most embedded local trees of

patterns (that is movement is usually “upward in a tree), if two different patterns corresponding to

different non-local dependencies) could potentially insert empty nodes into the same tree fragment in

tree, the deeper pattern will be classified at higher node in tree and hence will be substituted. Since the

substitution of one pattern typically destroys the context for a classification of another pattern, the
shallower patterns are no longer classified.

The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

4

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

2.5 Evaluation Metrics

The evaluation metrics used for empty node recovery are: precision (P), recall (R), and f-score (F1).

Let H be the number of an empty node identified correctly, J be the total number of an empty node in

the training corpus and K be the total number of an empty node reported by the system. Then, the P, R

and F1 are calculated as follows:

K

H
P

J

H
R

RP

PR
F

 21

3 RESULTS AND DISCUSSION

3.1 Results

The system is trained on Wall Street Journal of Penn Treebank for 1,000 rounds of boosting with

different number of input examples for each empty node and the results are summarized in Table 3.1.

The F-score for empty node and its antecedent is very high in both UNIT *U* and SBAR 0: 98.9% and

98.6%. The empty node NP *PRO* has a small precision which leads it to low F-score compared with

the remaining ones in the Table 3.1.

The system achieves an overall precision of 92.9%, recall of 93.2% and F-score of 93.0%

which is better than the recent results reported by the reviewed approaches. Table 3.1 gives the empty

nodes recovery and their antecedents’ score for common empty node types using parse trees lacking

empty nodes and Wall Street Journal (WSJ) of Penn Treebank.

Table 3.1The empty nodes recovery and their antecedents’ score

Empty Node Type Precision (%) Recall (%) F-Score (%)

NP *PRO* 69.10 87.20 77.10

S *T* 98.40 96.00 97.20

NP * 96.40 93.80 95.10

NP *T* 97.30 95.30 96.30

UNIT *U* 98.10 99.70 98.90

WHNP 0 97.20 89.50 93.20

ADVP *T* 88.70 85.70 87.20

SBAR 0 98.30 98.90 98.60

Overall 92.90 93.20 93.00

3.2 Discussion

Table 3.2 shows that the boosting classifier system for empty nodes recovery and their antecedents
does quite well, managing an F-score of 93.0% higher than the system of Zhang and Nivre (2011) by

0.1%. However, the system also performs better than the Zhu et al. (2012)’s system, the difference is

quite small: only 2.7%. Two particular cases of interest are NP-NPs and PRO-NPs. The two are only

distinguished by their antecedent; NP-NP has an antecedent in the tree, while PRO-NP has none. The

system has, for most types of empty nodes, quite high antecedent recovery results, but the difficulty in

telling the difference between these two cases results in low F-score for antecedent recovery of PRO-

NP, despite the fact that it is among the most common empty node types. Even though this is a

problem, this system still does quite well: 77.1% for PRO-NP compared to the 69.7% reported by Cai

et al. (2011).

Table 3.2 Comparison of this system with previous approaches

The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

5

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

 This system Yang and

Xue (2010)’s

system

Caiet al.

(2011)’s

system

Zhang and

Nivre

(2011)’s

system

Zhu et al.

(2012)’s

system

Overall f-

score

93.00% 72.80% 89.30% 92.90% 90.30%

NP-PRO

f-score

77.10% 66.10% 69.70% 67.30% 67.50%

Fig. 3.1 shows when the system is compared with Yang and Xue (2010)’s system, there is an increase

of F-score from 72.8% to 93.0%. An error of 3.7% is also reduced by the system when compared with

Cai et al. (2011)’s model.

Fig. 3.1 Graph of comparison of this system with previous systems

4 CONCLUSION AND RECOMMENDATION

4.1 Conclusion

This work presents a method for enriching the output of broad coverage syntactic parsers (parse trees

without empty nodes) with information that is not provided by the parsers themselves, but is available

in a Treebank. Using the method with parse trees and Wall Street Journal (WSJ) of Penn Treebank

allowed the system to recover empty nodes and their antecedents and also the evaluation metrics

(precision, recall and F-score) were used in order to compare the performance of the systems with the

reviewed approaches. The results of the system based on boosting classification model show an overall

high F-score of about 93.0%. But the performance for NP-PRO has room for improvement.

4.2 Recommendation
The investigation of methods for adding information lacked by the output of broad coverage syntactic

parsers is needed in order to improve the performance on NP-PRO either dependent or independent of

the training corpus.

5. REFERENCES

Cai S., Chiang D., and Goldberg Y. (2011). Language-independent parsing with empty elements. In

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics,

Stroudsburg, PA, USA. pp. 212-216.

The Beam: Journal of Arts & Science, Vol. 9, (2016) ISSN: 1118-5953

6

Umaru Ali Shinkafi Polytechnic Sokoto, Nigeria

Chung T. and Gildea D. (2010). Effects of empty categories on machine translation. In proceedings of

the Conference on Empirical Methods in Natural Language Processing, Sapporo, Japan. pp.

80-87

Goldberg Y. and Elhadad M. (2010). An efficient algorithm for easy-first non-directional dependency

parsing. In Proceedings of North American Chapter of the Association for Computational

Linguistics. Los Angeles, California. pp. 742–750.
Johnson M. (2002). A simple pattern matching algorithm for recovering empty nodes and their

antecedents. In Proceedings of 40th Annual Meeting on Association for Computational

Linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 136-143.

Marcus P. M., Santorini B. and MarcinkiewiczA. M. (1993). Building a large annotated corpus of

English: the Penn Treebank. Association for ComputationalLinguistics, New York, USA. pp.

313–330.

Martins A., Smith N., and Xing E. (2009). Concise integer linear programming formulations for

dependency parsing. In Proceedings of Association for Computational Linguistics.Suntec,

Singapore. pp 342–350

Yang Y. and Xue N. (2010). Chasing the ghost: recovering empty categories in the Chinese Treebank.

In Proceedings of international conference on computational linguistics.Berjing. pp. 1382-

1390.
Zhang Y. and Clark S.(2008). A tale of two parsers: investigating and combining graph-basedand

transition-based dependency parsing using beamsearch. In Proceedings of theConference on

Empirical Methods in Natural Language Processing. Hawaii, USA. pp. 78-87.

Zhang Y. and Nivre J. (2011). Transition-based Dependency Parsing with Rich Non-local Features. In

Proceedings of 49th Annual Meeting of the Association for Computational Linguistics.

Portland, Oregon. pp 188-193.

Zhu M., Zhu J., and Wang H. (2012).Exploiting lexical dependencies from large-scale data for better-

shift-reduce constituency parsing. In proceedings of computational linguistics. Mumbai. pp.

3171-3186.

